Explanation:
x = (ab)^⅓ − (ab)^-⅓
Square both sides:
x² = (ab)^⅔ − 2 + (ab)^-⅔
Add 3 to both sides:
x² + 3 = (ab)^⅔ + 1 + (ab)^-⅔
Multiply both sides by x:
x (x² + 3) = x [(ab)^⅔ + 1 + (ab)^-⅔]
Substitute on the right hand side:
x (x² + 3) = ((ab)^⅓ − (ab)^-⅓) [(ab)^⅔ + 1 + (ab)^-⅔]
Distribute and simplify:
x (x² + 3) = (ab)^⅓ [(ab)^⅔ + 1 + (ab)^-⅔] − (ab)^-⅓ [(ab)^⅔ + 1 + (ab)^-⅔]
x (x² + 3) = ab + (ab)^⅓ + (ab)^-⅓ − [(ab)^⅓ + (ab)^-⅓ + (ab)⁻¹]
x (x² + 3) = ab + (ab)^⅓ + (ab)^-⅓ − (ab)^⅓ − (ab)^-⅓ − (ab)⁻¹
x (x² + 3) = ab − (ab)⁻¹
Multiply both sides by ab:
abx (x² + 3) = (ab)² − 1
abx (x² + 3) = a²b² − 1