asked 93.1k views
1 vote
Solve the equation, logx 8 + log8 x = 13/6​

asked
User Wohlstad
by
7.7k points

1 Answer

7 votes

Answer:


x=4


x=16√(2)

Explanation:

Given logarithmic equation:


\log_x8+\log_8x=(13)/(6)

Use the change of base log rule to rewrite logₓ8 with a base of 8.


\boxed{\begin{array}{l}\underline{\sf Change\;of\;base}\\\\\log_ba=(\log_xa)/(\log_xb)\end{array}}

Therefore:


\log_x8=(\log_88)/(\log_8x)

As logₐa = 1, then:


\log_x8=(\log_88)/(\log_8x)=(1)/(\log_8x)

Substitute this into the original equation:


(1)/(\log_8x)+\log_8x=(13)/(6)

Rewrite the equation using u = log₈x:


(1)/(u)+u=(13)/(6)

Rearrange the equation into a quadratic:


(1)/(u)+u\cdot (u)/(u)=(13)/(6)


(1)/(u)+(u^2)/(u)=(13)/(6)


(1+u^2)/(u)=(13)/(6)


6(1+u^2)=13u


6u^2+6=13u


6u^2-13u+6=0

Solve for u using the quadratic formula.


\boxed{\begin{array}{c}\underline{\sf Quadratic \;Formula}\\\\x=(-b \pm √(b^2-4ac))/(2a)\\\\\textsf{when}\; ax^2+bx+c=0 \\\end{array}}

In this case, the coefficients are:


  • a = 6

  • b=-13

  • c=6

Substitute the coefficients into the quadratic formula, and solve for u:


u=(-(-13) \pm √((-13)^2-4(6)(6)))/(2(6))


u=(13 \pm √(169-144))/(12)


u=(13 \pm √(25))/(12)


u=(13 \pm 5)/(12)

Therefore, the two values of u are:


u=(13-5)/(12)=(8)/(12)=\boxed{(2)/(3)}


u=(13+5)/(12)=(18)/(12)=\boxed{(3)/(2)}

Substitute back u = log₈x:


\log_8x=(2)/(3)


\log_8x=(3)/(2)

Solve for x using the log rule:


\boxed{\log_ab=c \iff b=a^c}

Therefore, the first value of x is:


\begin{aligned}x&=8^{(2)/(3)}\\x&=(2^3)^{(2)/(3)}\\x&=2^{\left(3 \cdot (2)/(3)\right)}\\x&=2^2\\x&=4\end{aligned}

The second value of x is:


\begin{aligned}x&=8^{(3)/(2)}\\x&=√(8^3)\\x&=√(512)\\x&=√(16^2\cdot2)\\x&=√(16^2)√(2)\\x&=16√(2)\end{aligned}

Therefore, the solutions to the given logarithmic equation are:


\large\boxed{\begin{aligned}x&=4\\x&=16√(2)\end{aligned}}

answered
User Aristo Michael
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.