asked 46.1k views
3 votes
Sec40° +√3 cossec40° = 4​

1 Answer

6 votes

Prove that :


\sf\sec40 \degree + √(3) \csc40 \degree = 4

Explanation:


\rightarrow\sf\sec40 \degree + √(3) \csc40 \degree


\rightarrow \: \sf (1)/( \cos 40\degree) + ( √(3) )/( \sin40 \degree )


\rightarrow \: \sf (\sin40 \degree + √(3)\cos 40\degree )/( \cos 40\degree. \sin40 \degree)

Multiply and Divide ½


\rightarrow \: \sf ( (1)/(2) \sin40 \degree + ( √(3) )/(2) \cos 40\degree )/( (1)/(2) \cos 40\degree. \sin40 \degree)


\rightarrow \: \sf ( ( √(3) )/(2) \cos 40\degree + (1)/(2) \sin40 \degree )/( (1)/(2) \cos 40\degree. \sin40 \degree)

we know,


\cos30 \degree = ( √(3) )/(2) \\ \sin30 \degree = (1)/(2) \: \: \:


\rightarrow \: \sf ( \cos 40\degree.\cos30 \degree + \sin40 \degree .\sin 30\degree )/( (1)/(2) \cos 40\degree. \sin40 \degree)


  • \boxed{ \bf \cos(a - b) = \cos a. \cos b + \sin a. \sin b}


\rightarrow \: \sf ( \cos (40\degree - 30 \degree) )/( (1)/(2) \cos 40\degree. \sin40 \degree)


\rightarrow \: \sf ( \cos 10 \degree )/( (1)/(2) \cos 40\degree. \sin40 \degree)

Multiply and Divide by 4


\rightarrow \: \sf ( 4\cos 10 \degree )/( 4 * (1)/(2) \cos 40\degree. \sin40 \degree)


\rightarrow \: \sf ( 4\cos 10 \degree )/( 2 \sin40 \degree.\cos 40\degree)


  • \underline{\boxed{ \rm \: \sin2 \theta = 2 \sin \theta. \cos\theta}}


\rightarrow \: \sf ( 4\cos 10 \degree )/( \sin ( 2 * 40 \degree))


\rightarrow \: \sf ( 4\cos 10 \degree )/( \sin ( 80 \degree))


\rightarrow \: \sf ( 4\cos 10 \degree )/( \sin ( 90 \degree- 10 \degree))


  • \underline{\boxed{\sin(90 - \theta) = \cos \theta}}


\rightarrow \: \sf ( 4\cos 10 \degree )/( \cos 10 \degree)


\rightarrow \: \sf \frac{ 4 \cancel{\cos 10 \degree} }{ \cancel{\cos 10 \degree}}


\rightarrow \: 4

Hense, Verified ✅️

answered
User Leojh
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.