Answers:
(a) 0.8576
(b) 0.16
=================================================
Work Shown for Part (a)
P(A) = 0.89
P(not A) = 1 - P(A)
P(not A) = 1 - 0.89
P(not A) = 0.11
P(B) = 0.16
P(not B) = 1 - P(B)
P(not B) = 1 - 0.16
P(not B) = 0.84
P(not A and not B) = P(not A)*P(not B)
P(not A and not B) = 0.11*0.84
P(not A and not B) = 0.0924
P(not A or not B) = P(not A) + P(not B) - P(not A and not B)
P(not A or not B) = 0.11 + 0.84 - 0.0924
P(not A or not B) = 0.8576
-----------------
An alternative approach to part (a)
P(A) = 0.89
P(B) = 0.16
P(A and B) = P(A)*P(B)
P(A and B) = 0.89*0.16
P(A and B) = 0.1424
P(not A or not B) = P( not (A and B) )
P(not A or not B) = 1 - P(A and B)
P(not A or not B) = 1 - 0.1424
P(not A or not B) = 0.8576
------------------------------------
Work Shown for part (b)
P(A) = 0.89
P(B) = 0.16
P(not A) = 1 - P(A)
P(not A) = 1 - 0.89
P(not A) = 0.11
P(B and not A) = P(B)*P(not A)
P(B and not A) = 0.16*0.11
P(B and not A) = 0.0176
P(B and A) = P(B)*P(A)
P(B and A) = 0.16*0.89
P(B and A) = 0.1424
P( (B and not A) or (B and A) ) = P(B and not A) + P(B and A)
P( (B and not A) or (B and A) ) = 0.0176 + 0.1424
P( (B and not A) or (B and A) ) = 0.16
It is not a coincidence that we end up with P(B) = 0.16
In this case, we're asking about the probability of B occurring regardless if A occurs or not. So we're just looking to compute P(B).
Refer to the law of total probability for more information.