Answer:
f'(-1.5) ≈ 0.958
f'(-1.25) ≈ 1.013
f'(4) ≈ 3.270
Explanation:
We can use the definition of derivative to evaluate these values.
f'(x) = lim h-->0 (f(x+h) - f(x)) / h
f'(-1.5) = lim h-->0.001 (f(-1.5 + 0.001) - f(-1.5)) / 0.001
f'(-1.5) = lim h-->0.001 (f(-1.499) - 4.293) / 0.001
f'(-1.5) ≈ 0.958
f'(-1.25) = lim h-->0.001 (f(-1.25 + 0.001) - f(-1.25)) / 0.001
f'(-1.25) = lim h-->0.001 (f(-1.249) - 4.540) / 0.001
f'(-1.25) ≈ 1.013
f'(4) = lim h-->0.001 (f(4 + 0.001) - f(4)) / 0.001
f'(4) = lim h-->0.001 (f(4.001) - f(4)) / 0.001
f'(4) ≈ 3.270