asked 180k views
0 votes
\sqrt{3 - \sqrt{5} } + \sqrt{3 + \sqrt{5} }

1 Answer

3 votes

Answer:


\sqrt{3 - √(5)} + \sqrt{3 + √(5)}=\boxed{√(10)}

Explanation:

Given expression:


\sqrt{3 - √(5)} + \sqrt{3 + √(5)}

Set the expression equal to y (where y is the value of the expression).


\sqrt{3 - √(5)} + \sqrt{3 + √(5)}=y

Square both sides:


\left(\sqrt{3 - √(5)} + \sqrt{3 + √(5)}\right)^2=y^2

Apply the perfect square formula, (a + b)² = a² + 2ab + b², to the left side of the equation, where:


  • a = \sqrt{3 - √(5)}

  • b = \sqrt{3 + √(5)}


\left(\sqrt{3 - √(5)}\right)^2 +2\left(\sqrt{3 - √(5)}\right) \left(\sqrt{3 + √(5)}\right)+\left(\sqrt{3 + √(5)}\right)^2=y^2

Evaluate the squared square roots:


3 - √(5) +2\left(\sqrt{3 - √(5)}\right) \left(\sqrt{3 + √(5)}\right)+3 + √(5)=y^2


6+2\left(\sqrt{3 - √(5)}\right) \left(\sqrt{3 + √(5)}\right)=y^2


6+2\sqrt{3 - √(5)} \sqrt{3 + √(5)}=y^2

Apply the radical rule, √m√n = √(mn), and evaluate:


\begin{aligned}6+2\sqrt{(3 - √(5))(3 + √(5))}&=y^2\\\\6 +2\sqrt{\left(9+3√(5)-3√(5)-5\right)} &=y^2\\\\6 +2√(4)& =y^2\\\\6 +2√(2^2) &=y^2\\\\6 +2(2) &=y^2\\\\6 +4 &=y^2\\\\10&=y^2\\\\√(10)&=√(y^2)\\\\√(10)&=y\\\\y&=√(10)\end{aligned}

Therefore, the exact value of the expression is √(10).

answered
User Marc Stevenson
by
8.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.