Answer:
raph of function f(x) is concave down when f"(x) < 0
�
=
�
�
−
2
�
y=xe 
−2x
 
Differentiating with respect to x
�
′
=
�
−
2
�
+
�
⋅
�
−
2
�
(
−
2
)
y 
′
 =e 
−2x
 +x⋅e 
−2x
 (−2)
⇒
�
′
=
�
−
2
�
(
1
−
2
�
)
⇒y 
′
 =e 
−2x
 (1−2x)
Differentiating with respect to x again
�
′
′
=
�
−
2
�
(
0
−
2
)
+
(
1
−
2
�
)
�
−
2
�
⋅
(
−
2
)
y 
′′
 =e 
−2x
 (0−2)+(1−2x)e 
−2x
 ⋅(−2)
⇒
�
′
′
=
�
−
2
�
(
−
2
−
2
(
1
−
2
�
)
)
⇒y 
′′
 =e 
−2x
 (−2−2(1−2x))
⇒
�
′
′
=
�
−
2
�
(
−
2
−
2
+
4
�
)
⇒y 
′′
 =e 
−2x
 (−2−2+4x)
⇒
�
′
′
=
(
4
�
−
4
)
�
−
2
�
⇒y 
′′
 =(4x−4)e 
−2x
 
point of inflection when 
�
′
′
=
0
y 
′′
 =0
Since 
�
−
2
�
e 
−2x
 is always positive
(
4
�
−
4
)
=
0
(4x−4)=0
�
=
1
x=1
We need to check sign of 
�
′
′
y 
′′
 for x < 1 and x >1
Explanation:
�
′
′
=
�
−
2
⋅
0
(
4
⋅
0
−
4
)
=
1
(
0
−
4
)
=
−
4
<
0
y 
′′
 =e 
−2⋅0
 (4⋅0−4)=1(0−4)=−4<0 ................concave downward
when x > 1 (let x=2)
�
′
′
=
�
−
2
⋅
2
(
4
⋅
2
−
4
)
=
�
−
4
⋅
4
≈
0.07
>
0
y 
′′
 =e 
−2⋅2
 (4⋅2−4)=e 
−4
 ⋅4≈0.07>0 ............concave upward
Thus, graph of 
�
=
�
�
−
2
�
y=xe 
−2x
 is concave down for x <1
In interval notation, graph of 
�
=
�
�
−
2
�
y=xe 
−2x
 is concave down in 
(
−
∞
,
1
)
(−∞,1