Here is an MIPS assembly language program to calculate the square of a positive integer N using recursion:
The MPS Program
# Recursive function to calculate the square of N
# Square( N ) = Triangle( N ) + Triangle( N - 1 )
.text
.globl main
main:
li $v0, 4 # Prompt user for input
la $a0, prompt # Load address of prompt string
syscall
li $v0, 5 # Read user input
syscall
move $t0, $v0 # Store user input in $t0
jal Square # Call Square function
move $a0, $v0 # Move result to $a0 for printing
li $v0, 1 # Print the result
syscall
li $v0, 10 # Exit
syscall
Square:
addi $sp, $sp, -8 # Create stack frame
sw $ra, 0($sp) # Save return address
sw $a0, 4($sp) # Save argument N
li $v0, 1 # Base case: Square( N <= 1 ) = 1
blez $a0, square_end # Return 1 if N <= 1
addi $a0, $a0, -1 # Calculate N - 1
jal Triangle # Call Triangle( N - 1 )
move $t0, $v0 # Store result in $t0
lw $a0, 4($sp) # Retrieve original N
jal Triangle # Call Triangle( N )
addu $v0, $v0, $t0 # Add results for Square( N )
square_end:
lw $ra, 0($sp) # Restore return address
addi $sp, $sp, 8 # Restore stack pointer
jr $ra # Return
Triangle:
# Implementation of Triangle function (not provided in this snippet)
# Calculate Triangle( N )
# (Code for Triangle function goes here)