asked 60.1k views
0 votes
Evaluate the integral ∬D​(xy)dA, where D is the intersection of D1​={(r,θ)∣r≤4cosθ} and D2​={(r,θ)∣r≤4sinθ}.

1 Answer

7 votes

Answer:

4

Explanation:

Let
x=r\cos\theta,
y=r\sin\theta, and
dA=r\,dr\,d\theta:


\displaystyle \iint_Dxy\,dA\\\\=\iint_Dr^3\sin\theta\cos\theta\,dr\,d\theta\\\\=\int^(\pi)/(4)_0\int^\sqrt8}_0r^3\sin\theta\cos\theta\,dr\,d\theta\\\\=\int^(\pi)/(4)_0\sin\theta\cos\theta\int^\sqrt8}_0r^3\,dr\,d\theta\\\\=\int^(\pi)/(4)_0\sin\theta\cos\theta\biggr(((√(8))^4)/(4)\biggr)\,d\theta\\\\=\int^(\pi)/(4)_016\sin\theta\cos\theta\,d\theta

Let
u=\sin\theta and
du=\cos\theta\,d\theta and the bounds be from
u_1=\sin0=0 to
u_2=\sin((\pi)/(4))=(√(2))/(2):


\displaystyle =\int^(√(2))/(2)_016u\,du\\\\=8u^2\biggr|^(√(2))/(2)_0\\\\=8\biggr((√(2))/(2)\biggr)^2\\\\=8\biggr((2)/(4)\biggr)\\\\=4

answered
User Dan Syrstad
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.