asked 212k views
5 votes
Simplify fully.

X^-1 +3x-4
—————
2x²-5x+3

asked
User CBlew
by
8.9k points

1 Answer

4 votes

Answer:


(3x-1)/(2x^2-3x)

Explanation:

Given rational expression:


(x^(-1)+3x-4)/(2x^2-5x+3)

First, we need to eliminate the negative exponent in the numerator.

To do this, multiply the numerator by x / x:


\begin{aligned}(x^(-1)+3x-4) \cdot (x)/(x)&=( x^(-1)\cdot x+3x\cdot x-4 \cdot x)/(x)\\\\&=(1+3x^2-4x)/(x)\end{aligned}

Therefore:


(x^(-1)+3x-4)/(2x^2-5x+3)=((1+3x^2-4x)/(x))/(2x^2-5x+3)


\textsf{Apply\:the\:fraction\:rule:}\:((a)/(b))/(c)=(a)/(b\cdot \:c)


=(1+3x^2-4x)/(x\cdot (2x^2-5x+3))


=(3x^2-4x+1)/(x(2x^2-5x+3))

Factor the quadratics in the numerator and the denominator:


\begin{aligned}\textsf{Numerator:}\quad 3x^2-4x+1&=3x^2-3x-x+1\\&=3x(x-1)-1(x-1)\\&=(3x-1)(x-1)\end{aligned}


\begin{aligned}\textsf{Denominator:}\quad 2x^2-5x+3&=2x^2-2x-3x+3\\&=2x(x-1)-3(x-1)\\&=(2x-3)(x-1)\end{aligned}

Therefore:


(x^(-1)+3x-4)/(2x^2-5x+3)=((3x-1)(x-1))/(x(2x-3)(x-1))

Factor out the common term (x - 1):


=(3x-1)/(x(2x-3))

Simplify the denominator:


=(3x-1)/(2x^2-3x)

Therefore:


(x^(-1)+3x-4)/(2x^2-5x+3)=\boxed{(3x-1)/(2x^2-3x)}

answered
User Biovisualize
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.