asked 38.6k views
3 votes
C) If the given ordered pairs belong to f(x)=x² +4, find the value of p (0,p) (p,20) (4,p)​

asked
User Sharri
by
7.4k points

1 Answer

4 votes

Answer: p = 4 for (0, p) and (p, 20)

p = 20 for (4, p)

Step-by-step explanation: To find the value of p in each ordered pair, we need to plug in the given values into the function f(x) = x^2 + 4 and solve for p.

(0, p)

When x = 0, we have:

f(0) = 0^2 + 4 = 4

So the ordered pair is (0, 4), which means p = 4.

(p, 20)

When x = p, we have:

f(p) = p^2 + 4

We are also given that f(p) = 20, so we can set up the equation:

p^2 + 4 = 20

Subtracting 4 from both sides, we get:

p^2 = 16

Taking the square root of both sides, we get:

p = ±4

Since the ordered pair (p, 20) lies on the graph of f(x) = x^2 + 4, we can eliminate the negative root and conclude that p = 4.

(4, p)

When x = 4, we have:

f(4) = 4^2 + 4 = 20

So the ordered pair is (4, 20), which means p = 20.

Therefore, the values of p are:

p = 4 for (0, p) and (p, 20)

p = 20 for (4, p)

answered
User Ascension
by
8.1k points

No related questions found