asked 219k views
2 votes
Evaluate the following improper integral. If the integral diverges, enter "DIV".

[₁
IH
Te dx=

Evaluate the following improper integral. If the integral diverges, enter "DIV-example-1

1 Answer

2 votes

Answer:


2e^(-1)}

Explanation:

Evaluate the given improper integral.


\int\limits^( \infty)_(1) {xe^(-x)} \, dx\\\\\\\hrule

Using integration by parts.


\boxed{\left\begin{array}{ccc}\text{\underline{Integration by Parts}}\\\\uv-\int vdu\end{array}\right}

Letting...

u = x => du = dx

dv = e^{-x} dx => v = -e^{-x}


\int\limits^( \infty)_(1) {xe^(-x)} \, dx\\\\\\\\\Longrightarrow (x)(-e^(-x))-\int\limits^( \infty)_(1) {-e^(-x)} \, dx\\\\\\\\\Longrightarrow -xe^(-x)\Big|\limits^( \infty)_(1)+\int\limits^( \infty)_(1) {e^(-x)} \, dx\\\\\\\\\Longrightarrow \Big[ -xe^(-x)-e^(-x)\Big]\limits^( \infty)_(1)\\\\ \\\\\Longrightarrow \Big[ -(\infty)e^(-\infty)-e^(-\infty)\Big]-\Big[ -(1)e^(-(1))-e^(-(1))\Big]\\\\\\ \\\Longrightarrow \Big[-0-0\Big]-\Big[ -e^(-1)-e^(-1)\Big]


\Longrightarrow e^(-1)+e^(-1)\\\\\\\\\therefore \int\limits^( \infty)_(1) {xe^(-x)} \, dx =\boxed{2e^(-1)}

Thus, the problem is solved.

answered
User Sagar Nayak
by
8.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.