Answer:

Explanation:
To solve the quadratic equation x² - 2x = 8 by factoring, subtract 8 from both sides of the equation so that it is in the form ax² + bx + c = 0:


Find two numbers whose product is equal to the product of the coefficient of the x²-term and the constant term, and whose sum is equal to the coefficient of the x-term.
The two numbers whose product is -8 and sum is -2 are -4 and 2.
Rewrite the coefficient of the middle term as the sum of these two numbers:

Factor the first two terms and the last two terms separately:

Factor out the common term (x - 4):

Apply the zero-product property:


Therefore, the solutions to the given quadratic equation are:
