asked 111k views
3 votes
3. Consider the acoustic plane wave p(t,rˉ)=Aej(ωt−kˉ⋅rˉ), where A,ω, and kˉ are known quantities. The wave propagates into a medium of known characteristic impedance Z0. Prove that the particle velocity corresponding to this wave has the following expression vˉ(t,rˉ)= p(t,rˉ)k^/ Z0a

1 Answer

5 votes

The particle velocity corresponding to the given acoustic wave is $$\boxed{\vec v = \frac{A}{Z_0}\frac{\vec k}{k}e^{j(\omega t-\vec k.\vec r)}}$$where A,ω, and $\vec k$ are known quantities. The wave propagates into a medium of known characteristic impedance Z0.

Given, acoustic plane wave


$$p(t,\vec r)=Ae^(j(\omega t-\vec k.\vec r))$$

where A,ω, and
$\vec k$ are known quantities.

he wave propagates into a medium of known characteristic impedance Z0.Acoustic pressure,


$$p(t,\vec r)=Ae^(j(\omega t-\vec k.\vec r))$$

Particle velocity,


$$\vec v=(1)/(j\omega\rho)\vec \\abla p$$


$$\vec v=(1)/(j\omega\rho)\begin{pmatrix} \hat i & \hat j & \hat k \\ (\partial)/(\partial x) & (\partial)/(\partial y) & (\partial)/(\partial z)\\ A e^(j(\omega t-\vec k.\vec r)) & A e^(j(\omega t-\vec k.\vec r)) & A e^(j(\omega t-\vec k.\vec r))\end{pmatrix}$$

where
$\rho$ is density of the medium and


$\hat i,\hat j,\hat k$ are unit vectors in x,y and z direction respectively.


$$=(A)/(j\omega\rho)\begin{pmatrix} \hat i & \hat j & \hat k \\ -k_x e^(j(\omega t-\vec k.\vec r)) & -k_y e^(j(\omega t-\vec k.\vec r)) & -k_z e^(j(\omega t-\vec k.\vec r))\end{pmatrix}$$

Substituting
$\vec k=(\omega)/(v)\hat k$where v is the velocity of the wave.


$\vec k=(\omega)/(v)\hat k$

Substituting $Z_0 = \rho v$ and


$$(1)/(Z_0) = (1)/(\rho v) = (j\omega)/(\rho) (1)/(j\omega v) = (j\omega)/(\rho) (1)/(k)$$

where k is the wave number,

$$\frac{\omega}{k} = v$$

Hence the particle velocity is,

$$\vec v = \frac{A}{j\omega \rho Z_0}\begin{pmatrix} \hat i & \hat j & \hat k \\ -\hat k_x & -\hat k_y & -\hat k_z\end{pmatrix}e^{j(\omega t-\vec k.\vec r)}$$

$$\vec v = \frac{A}{Z_0}\frac{\vec k}{k}e^{j(\omega t-\vec k.\vec r)}$$

Thus the particle velocity corresponding to the given acoustic wave is

$$\boxed{\vec v = \frac{A}{Z_0}\frac{\vec k}{k}e^{j(\omega t-\vec k.\vec r)}}$$

where A,ω, and $\vec k$ are known quantities. The wave propagates into a medium of known characteristic impedance Z0.

answered
User Carcamano
by
7.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.