Answer:

Explanation:
Find the derivative of the following function, then evaluate the function at a point.


Taking the derivative of the function, r. Start by applying exponent rules.

Now we can derive the function. Using the chain rule and power rule:
![\boxed{\left\begin{array}{ccc}\text{\underline{The Chain Rule:}}\\\\(d)/(dx)\Big[f(g(x))\Big]=f'(g(x))\cdot g'(x) \end{array}\right}](https://img.qammunity.org/2024/formulas/mathematics/college/1drkxdojwdtk26dktwtw7vtdxb0g2yclbb.png)
![\boxed{\left\begin{array}{ccc}\text{\underline{The Power Rule:}}\\\\(d)/(dx)\Big[x^n\Big]=nx^(n-1) \end{array}\right}](https://img.qammunity.org/2024/formulas/mathematics/college/zvg4c4i8fi74spcnix2rz8mc8bt8dqzdjr.png)

Thus, the derivative of the function is found.

Now evaluating the function when θ=1.

Thus, the problem is solved.