Answer:
568.54 cm^3/minute when the radius is 7.1 cm.
Explanation:
To find how fast the volume is changing, we can use the relationship between the radius and the volume of a sphere. The formula for the volume of a sphere is V = (4/3)πr^3, where V is the volume and r is the radius.
We are given that the radius is increasing at a rate of 0.9 cm/minute. We need to find the rate of change of the volume when the radius is 7.1 cm.
Let's differentiate the volume formula with respect to time:
dV/dt = (4/3)π(3r^2)(dr/dt)
Now we can substitute the given values:
r = 7.1 cm
dr/dt = 0.9 cm/minute
dV/dt = (4/3)π(3(7.1)^2)(0.9)
dV/dt = (4/3)π(3(50.41))(0.9)
dV/dt = (4/3)π(151.23)(0.9)
dV/dt = (4/3)(135.75)π
dV/dt = 181π
Calculating the numerical value:
dV/dt ≈ 568.54 cm^3/minute
Therefore, the volume is changing at a rate of approximately 568.54 cm^3/minute when the radius is 7.1 cm.