asked 196k views
1 vote
The signal x(t) = u(t) + 5u(t-1)-2u(t-2) has an average power of 8W. O True False

1 Answer

2 votes

False.

The given signal,
\displaystyle x(t) = u(t) + 5u(t-1) - 2u(t-2), is a combination of unit step functions, denoted as
\displaystyle u(t). The unit step function is defined as:


\displaystyle u(t)=\begin{cases}0, &amp; t<0\\ 1, &amp; t\geq 0 \end{cases}

To calculate the average power of a continuous-time signal, we use the formula:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\int _{-(T)/(2)}^{(T)/(2)}\left| x(t)\right| ^(2)\, dt

Applying this formula to the given signal, we have:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\int _{-(T)/(2)}^{(T)/(2)}\left| u(t)+5u(t-1)-2u(t-2)\right| ^(2)\, dt

The signal
\displaystyle u(t) is either 0 or 1, so squaring it does not change its value. Therefore, we can simplify the expression:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\int _{-(T)/(2)}^{(T)/(2)}\left| 1+5u(t-1)-2u(t-2)\right| ^(2)\, dt

Since the unit step functions only change their values at
\displaystyle t=1 and
\displaystyle t=2, the absolute value inside the integral evaluates to:


\displaystyle \left| 1+5u(t-1)-2u(t-2)\right| =\begin{cases}1, &amp; -(T)/(2)\leq t<0\\6, &amp; 0\leq t<1\\7, &amp; 1\leq t<2\\5, &amp; 2\leq t\leq (T)/(2)\end{cases}

Now, we can split the integral into four intervals based on these values:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ \int _{-(T)/(2)}^(0)1^(2)\, dt+\int _(0)^(1)6^(2)\, dt+\int _(1)^(2)7^(2)\, dt+\int _(2)^{(T)/(2)}5^(2)\, dt\right]

Simplifying each integral, we get:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ \left[ t\right] _{-(T)/(2)}^(0)+6^(2)\left[ t\right] _(0)^(1)+7^(2)\left[ t\right] _(1)^(2)+5^(2)\left[ t\right] _(2)^{(T)/(2)}\right]


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ 0+6^(2)( 1-0) +7^(2)( 2-1) +5^(2)\left( (T)/(2) -2\right)\right]

Simplifying further, we have:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ 36+49+25\left( (T)/(2) -2\right)\right]


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left( 110+(25T)/(2) -50\right)

Taking the limit as
\displaystyle T approaches infinity, we find:


\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(110+(25T)/(2) -50)/(T)


\displaystyle P_{\text{avg}}=(25)/(2)

Therefore, the average power of the given signal is
\displaystyle (25)/(2) Watts, which is not equal to 8W. Hence, the statement is false.


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}