False.
The given signal,
, is a combination of unit step functions, denoted as
. The unit step function is defined as:

To calculate the average power of a continuous-time signal, we use the formula:

Applying this formula to the given signal, we have:

The signal
is either 0 or 1, so squaring it does not change its value. Therefore, we can simplify the expression:

Since the unit step functions only change their values at
and
, the absolute value inside the integral evaluates to:

Now, we can split the integral into four intervals based on these values:
![\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ \int _{-(T)/(2)}^(0)1^(2)\, dt+\int _(0)^(1)6^(2)\, dt+\int _(1)^(2)7^(2)\, dt+\int _(2)^{(T)/(2)}5^(2)\, dt\right]](https://img.qammunity.org/2024/formulas/engineering/college/sjt3e95elk7nnmwcroeyp5ybj6xy4hdc3j.png)
Simplifying each integral, we get:
![\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ \left[ t\right] _{-(T)/(2)}^(0)+6^(2)\left[ t\right] _(0)^(1)+7^(2)\left[ t\right] _(1)^(2)+5^(2)\left[ t\right] _(2)^{(T)/(2)}\right]](https://img.qammunity.org/2024/formulas/engineering/college/p38v38xfza8cb2f5dew0mw67oqtfgyatd2.png)
![\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ 0+6^(2)( 1-0) +7^(2)( 2-1) +5^(2)\left( (T)/(2) -2\right)\right]](https://img.qammunity.org/2024/formulas/engineering/college/228shu8sni247r3rh2ymmilxs1rj0y5q4a.png)
Simplifying further, we have:
![\displaystyle P_{\text{avg}}=\lim _(T\rightarrow \infty )(1)/(T)\left[ 36+49+25\left( (T)/(2) -2\right)\right]](https://img.qammunity.org/2024/formulas/engineering/college/b2yakh28n8mcd0ad6b9fl5gg1fu9vgcih5.png)

Taking the limit as
approaches infinity, we find:


Therefore, the average power of the given signal is
Watts, which is not equal to 8W. Hence, the statement is false.

♥️
