Answer: Drawing a red or white marble and Drawing a marble that is not blue
Step-by-step explanation:
To determine which events have a probability greater than 1/5 (0.2), we need to calculate the probability of each event and compare it to 0.2.
Here are three options:
Drawing a blue marble:
The probability of drawing a blue marble can be calculated by dividing the number of blue marbles (2) by the total number of marbles in the bag (2 + 3 + 5 = 10).
Probability of drawing a blue marble = 2/10 = 0.2
The probability of drawing a blue marble is exactly 0.2, which is equal to 1/5.
Drawing a red or white marble:
To calculate the probability of drawing a red or white marble, we need to add the number of red marbles (3) and the number of white marbles (5) and divide it by the total number of marbles in the bag.
Probability of drawing a red or white marble = (3 + 5)/10 = 8/10 = 0.8
The probability of drawing a red or white marble is greater than 0.2 (1/5).
Drawing a marble that is not blue:
The probability of drawing a marble that is not blue can be calculated by subtracting the number of blue marbles (2) from the total number of marbles in the bag (10) and dividing it by the total number of marbles.
Probability of drawing a marble that is not blue = (10 - 2)/10 = 8/10 = 0.8
The probability of drawing a marble that is not blue is greater than 0.2 (1/5).
Therefore, the events "Drawing a red or white marble" and "Drawing a marble that is not blue" have probabilities greater than 1/5 (0.2).