Answer:
To determine the amount of AgCl formed, we need to follow the stoichiometry of the balanced equation and calculate the molar amounts of the reactants and products.
First, let's calculate the number of moles of FeCl3 used:
Molar mass of FeCl3 = atomic mass of Fe + (3 * atomic mass of Cl)
= (55.845 g/mol) + (3 * 35.453 g/mol)
= 162.204 g/mol
Moles of FeCl3 = mass of FeCl3 / molar mass of FeCl3
= 6.60 g / 162.204 g/mol
= 0.0407 mol
According to the balanced equation, the ratio of FeCl3 to AgCl is 1:3. Therefore, 1 mol of FeCl3 reacts to form 3 mol of AgCl.
Moles of AgCl formed = 3 * moles of FeCl3
= 3 * 0.0407 mol
= 0.1221 mol
Finally, let's calculate the mass of AgCl formed:
Molar mass of AgCl = atomic mass of Ag + atomic mass of Cl
= 107.868 g/mol + 35.453 g/mol
= 143.321 g/mol
Mass of AgCl formed = moles of AgCl formed * molar mass of AgCl
= 0.1221 mol * 143.321 g/mol
= 17.49 g
Therefore, if you combine 6.60 grams of FeCl3 with an excess of AgNO3, you will form approximately 17.49 grams of AgCl.