Answer:
(a) The minterms are m0 = b'c'd' + a'c'd' + a'b'd' + a'b'c' and m4 = b'c'd + a'b'd + a'bc'd + a'bc' + abcd. ORing these together gives the canonical SOP of F1: F1 = m0 + m4 = b'c'd' + a'c'd' + a'b'd' + a'b'c' + b'c'd + a'b'd + a'bc'd + a'bc' + abcd
(b) Adding 4 to each subscript gives: F2 = m4,4 + m8,8 = b'c'd' + a'b'c'd + a'bc'd + abcd + b'c'd + a'b'c'd + a'bc' + abcd = b'c'd' + a'b'c'd + a'bc'd + 2abcd + a'bc'
(c) To obtain the POS of F2, apply DeMorgan's law to each term: F2 = (b+c+d)(a+c+d)(a'+b'+d')(a'+b'+c')' + (b+c+d)(a'+b+c+d')(a+b'+c+d')(a+b+c'+d')'(a'+b+c') + (b'+c+d')(a+b'+c+d')(a'+b+c+d')(a+b+c+d) = Π(0,2,5,6,9,11,14)'
(d) The truth table for F1 is:
a | b | c | d | F1 --+---+---+---+--- 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 1 | 1 0 | 0 | 1 | 0 | 1 0 | 0 | 1 | 1 | 1 0 | 1 | 0 | 0 | 1 0 | 1 | 0 | 1 | 1 0 | 1 | 1 | 0 | 1 0 | 1 | 1 | 1 | 1 1 | 0 | 0 | 0 | 1 1 | 0 | 0 | 1 | 0 1 | 0 | 1 | 0 |
Step-by-step explanation: