asked 119k views
4 votes
Find limit by using L'hopital's rule
lim ( 1 + lnx/x )
x→+♾️​

asked
User Jenice
by
8.3k points

1 Answer

4 votes


\displaystyle \lim_(x\to \infty) 1+\cfrac{ln(x)}{x}\implies \lim_(x\to \infty) \cfrac{x+ln(x)}{x} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{ \textit{using L'Hopital once} }{\cfrac{(d)/(dx)[x+ln(x)]}{(d)/(dx)(x)}}\implies \cfrac{ ~~ 1+ ( 1 )/( x ) ~~ }{1}\implies 1+\cfrac{1}{x}\implies \cfrac{x+1}{x}


\stackrel{ \textit{using L'Hopital twice} }{\cfrac{(d)/(dx)[x+1]}{(d)/(dx)(x)}}\implies \cfrac{1}{1}\implies 1 \\\\[-0.35em] ~\dotfill\\\\ \displaystyle \lim_(x\to \infty) \cfrac{x+ln(x)}{x}\implies \lim_(x\to \infty) 1\implies \text{\LARGE 1}

answered
User Chatu
by
8.2k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.