asked 152k views
0 votes
When x > 0 and y > 0, what expression is equivalent to √180x^9y^16 in simplest form?

asked
User Guybrush
by
8.1k points

1 Answer

3 votes

Answer:


6x^4y^8√(5x)

Explanation:


\textsf{When $x > 0$ and $y > 0$, we want to find the expression that is equivalent to}
\sqrt{180x^9y^(16)}.


\textsf{First, apply the radical rule:} \quad √(ab)=√(a)√(b)


√(180)√(x^9)\sqrt{y^(16)}


\textsf{Rewrite $x^9$ as $x^(8+1)$:}


√(180)\sqrt{x^((8+1))}\sqrt{y^(16)}


\textsf{Apply the exponent rule:} \quad a^(b+c)=a^b \cdot a^c


√(180)\sqrt{x^(8)\cdot x^1}\sqrt{y^(16)}


√(180)\sqrt{x^(8)}√(x)\sqrt{y^(16)}


\textsf{Apply\:the\:radical\:rule:\:}\sqrt[n]{a^m}=a^{(m)/(n)},\:\quad a\geq 0


√(180)\;x^{(8)/(2)}√(x)\;y^{(16)/(2)}


√(180)\;x^4√(x)\;y^8


√(180)√(x)\;x^4\;y^8


\textsf{Rewrite $180$ as $(6^2 \cdot 5)$:}


√(6^2 \cdot 5)√(x)\;x^4\;y^8


\textsf{Apply the radical rule:} \quad √(ab)=√(a)√(b)


√(6^2) √(5)√(x)\;x^4\;y^8


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


6 √(5)√(x)\;x^4\;y^8


\textsf{Apply the radical rule:} \quad √(a)√(b)=√(ab)


6 √(5x)\;x^4\;y^8


\textsf{Rearrange:}


6x^4y^8√(5x)


\textsf{Therefore, when $x > 0$ and $y > 0$, the expression that is equivalent to}


\sqrt{180x^9y^(16)}\;\textsf{is}\;\;\boxed{6x^4y^8√(5x)}\:.

answered
User Highwaychile
by
8.2k points

Related questions

2 answers
1 vote
207k views
asked Apr 7, 2019 15.9k views
Teradyl asked Apr 7, 2019
by Teradyl
8.6k points
1 answer
4 votes
15.9k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.