asked 118k views
0 votes
Given a normal distribution with μ = 101 and o=20, and given you select a sample of n = 16, complete parts (a) through (d). a. What is the probability that X is less than 95? P(X

1 Answer

4 votes

Answer: Hope it helps!!!

Step-by-step explanation:To solve this problem, we need to standardize the value of X using the formula:

z = (X - μ) / (σ / sqrt(n))

where X is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.

a) To find the probability that X is less than 95, we first need to standardize the value of 95:

z = (95 - 101) / (20 / sqrt(16)) = -1.6

We can then use a standard normal distribution table or calculator to find the probability:

P(X < 95) = P(z < -1.6) = 0.0548

Therefore, the probability that X is less than 95 is 0.0548 or about 5.48%.

b) To find the probability that X is between 95 and 105, we need to standardize the values of 95 and 105:

z1 = (95 - 101) / (20 / sqrt(16)) = -1.6

z2 = (105 - 101) / (20 / sqrt(16)) = 1.6

We can then use a standard normal distribution table or calculator to find the probability:

P(95 < X < 105) = P(-1.6 < z < 1.6) = 0.8664 - 0.0548 = 0.8116

Therefore, the probability that X is between 95 and 105 is 0.8116 or about 81.16%.

c) To find the value of X such that the probability of X being less than that value is 0.05, we need to use the inverse standard normal distribution:

z = invNorm(0.05) = -1.645

We can then solve for X:

-1.645 = (X - 101) / (20 / sqrt(16))

X - 101 = -1.645 * (20 / sqrt(16))

X = 101 - 2.06

X = 98.94

Therefore, the value of X such that the probability of X being less than that value is 0.05 is 98.94.

d) To find the value of X such that the probability of X being greater than that value is 0.10, we need to use the inverse standard normal distribution:

z = invNorm(0.10) = -1.28

We can then solve for X:

-1.28 = (X - 101) / (20 / sqrt(16))

X - 101 = -1.28 * (20 / sqrt(16))

X = 101 + 1.61

X = 102.61

Therefore, the value of X such that the probability of X being greater than that value is 0.10 is 102.61.

answered
User Abhishekmukherg
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.