asked 36.3k views
3 votes
- 4. Let C(w) = -a (where a > 0) for w = [0, 1] and C(w) = w − 1 − a otherwise. Find a so that E (C) = 0.

asked
User Yukio
by
7.9k points

1 Answer

5 votes

Answer:

We can find the expected value of C(w) as follows:

E(C) = ∫[0,1] C(w) dw + ∫(1,∞) C(w) f(w) dw

where f(w) is the probability density function of w outside the interval [0,1].

Since C(w) is a constant function in the interval [0,1], we have:

∫[0,1] C(w) dw = -a ∫[0,1] dw = -a

Using the fact that the integral of a probability density function over its entire domain is equal to 1, we can find f(w) as:

∫(1,∞) f(w) dw = 1 - ∫[0,1] dw = 1 - 1 = 0

Therefore, we can write:

E(C) = -a (0 - 1) + ∫(1,∞) (w - 1 - a) f(w) dw

Simplifying, we get:

E(C) = a - ∫(1,∞) (w - 1 - a) f(w) dw

To find the value of a that makes E(C) = 0, we need to solve the equation:

a - ∫(1,∞) (w - 1 - a) f(w) dw = 0

Multiplying both sides by -1 and rearranging, we get:

∫(1,∞) (w - 1 - a) f(w) dw = -a

Expanding the integrand, we get:

∫(1,∞) wf(w) dw - ∫(1,∞) f(w) dw - a ∫(1,∞) f(w) dw = -a

Since the integral of f(w) over its entire domain is equal to 1, we can simplify further:

∫(1,∞) wf(w) dw - 1 - a = -a

Rearranging, we get:

∫(1,∞) wf(w) dw = 1

This means that f(w) is a probability density function over the entire real line, not just outside the interval [0,1].

To find the value of a that satisfies this condition, we need to find the probability density function f(w) that integrates to 1 over the entire real line.

Since f(w) is a probability density function, it must be nonnegative and integrate to 1 over its entire domain.

One possible choice for f(w) that satisfies these conditions is:

f(w) = (1 - a) e^(-w) for w ≥ 1

Using this choice for f(w), we can verify that:

∫(1,∞) f(w) dw = ∫(1,∞) (1 - a) e^(-w) dw = (1 - a) e^(-1) = 1

Therefore, a = 1 - e^(-1) ≈ 0.6321 is the value that makes E(C) = 0.

answered
User Cem Kalyoncu
by
9.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.