asked 96.6k views
3 votes
A curve, described by x2 + y2 + 12y = 0, has a point A at (6, −6) on the curve.

Part A: What are the polar coordinates of A? Give an exact answer.

Part B: What is the polar form of the equation? What type of polar curve is this?

Part C: What is the directed distance when theta equals 2 pi over 3 question mark Give an exact answer.

A curve, described by x2 + y2 + 12y = 0, has a point A at (6, −6) on the curve. Part-example-1

1 Answer

2 votes

Answer:

A) In order to convert that rectangular coordinates into a polar one, we need to think of a right triangle whose hypotenuse is connecting the point to the origin.

So, we need to resort to some equations:

x ^ 2 + y ^ 2 = r ^ 2 tan(theta) = y/x theta = arctan(y/x)

Thus, we need now to plug x = - 4 and Y = 4 into that:

r= sqrt((- 4) ^ 2 + 4 ^ 2) Rightarrow r=4 sqrt 2 hat I_{s} = arctan(4/- 4) hat I , = arctan(4/- 4) + pi hat I ,= - pi/4 + pi

Note that we needed to add pi to the arctangent to adjust that point to the Quadrant.

answered
User Grigory Ilizirov
by
8.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.