Answer:
A general way to approach this type of problem:
m1 v1 + m2 v2 = m1 V1 + m2 V2 conservation of momentum
1/2 m1 v1^2 + 1/2 m2 v2^2 = 1/2 m1 V1^2 + 1/2 m2 V2^2 cons energy
m1 (v1 - V1) = m2 (V2 - v1) rewriting 1st equation
m1 (v1^2 - V1)^2 = m2 (V2^2 - v2^2) rewriting second equation
(v1 - V1) (v1 + V1) = (V2 - v2) (V2 + v2) expand second equation
v1 + V1 = v2 + V2 divide second equation by first equation
This illustrates the point that relative speed of approach equals relative speed of separation in an elastic collision