asked 206k views
3 votes
Factor the trinomial. 6x^2 + 13x – 5

A. (x + 15)(x – 2)


B. (x + 10)(x + 3)

C. (3x – 1)(2x + 5)


D. (3x + 1)(2x – 5)​

1 Answer

3 votes

Answer:

C. (3x – 1)(2x + 5)

Explanation:

To factor the trinomial 6x^2 + 13x - 5, we need to find two binomial factors whose product equals the given trinomial.

We can start by looking for two numbers that multiply to give the product of the coefficient of x^2, 6, and the constant term, -5. The product is -30.

We need to find two numbers that add up to the coefficient of x, which is 13.

After trying different combinations, we find that the numbers 15 and -2 satisfy these conditions. They multiply to -30 and add up to 13.

Now, we can rewrite the middle term 13x as 15x - 2x:

6x^2 + 15x - 2x - 5

Next, we group the terms and factor by grouping:

(6x^2 + 15x) + (-2x - 5)

Taking out the common factor from the first group and the second group:

3x(2x + 5) - 1(2x + 5)

Notice that we now have a common binomial factor, (2x + 5), which we can factor out:

(2x + 5)(3x - 1)

Therefore, the factored form of the trinomial 6x^2 + 13x - 5 is (3x - 1)(2x + 5).

answered
User Seed
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.