Let's denote the first fraction Levans wrote as $\frac{a}{b}$, where $a$ is the numerator and $b$ is the denominator.
According to the given information, we know that $\frac{a}{b}$ is a positive fraction in which the numerator is $1$ greater than the denominator. Therefore, we can write the equation:
$a = b + 1$
We also know that Levans wrote a total of $20$ fractions, so we can set up an equation using the product of the fractions:
$\left(\frac{a}{b}\right) \cdot \left(\frac{a+1}{b+1}\right) \cdot \left(\frac{a+2}{b+2}\right) \cdot \ldots \cdot \left(\frac{a+19}{b+19}\right) = 3$
To simplify the equation, we can cancel out common factors between the numerator and denominator in each fraction:
$\frac{a(a+1)(a+2)\ldots(a+19)}{b(b+1)(b+2)\ldots(b+19)} = 3$
Now, substituting $a = b + 1$ into the equation:
$\frac{(b+1)(b+2)(b+3)\ldots(b+19)(b+20)}{b(b+1)(b+2)\ldots(b+19)} = 3$
We can see that all the terms in the numerator and denominator cancel out except for the term $(b+20)$ in the numerator and the term $b$ in the denominator:
$\frac{b+20}{b} = 3$
Cross-multiplying, we have:
$b + 20 = 3b$
Simplifying the equation, we get:
$2b = 20$
$b = 10$
Since $a = b + 1$, we have:
$a = 10 + 1 = 11$
Therefore, the value of the first fraction Levans wrote is $\frac{11}{10}$.