Answer:
see explanation
Explanation:
given a parabola in standard form
f(x) = ax² + bx + c ( a ≠ 0 )
then the x- coordinate of the vertex is
= -

f(x) = 4x² + 16x + 21 ← is in standard form
with a = 4 , b = 16 , then
= -
= - 2
for corresponding y- coordinate substitute x = - 2 into f(x)
f(- 2) = 4(- 2)² + 16(- 2) + 21
= 4(4) - 32 + 21
= 16 - 11
= 5
vertex = (- 2, 5 )
the vertex = (h, k ) = (- 2, 5 ) , then
f(x) = a(x - (- 2) )² + 5
= a(x + 2)² + 5
here a = 4 , then
f(x) = 4(x + 2)² + 5 ← in the form a(x - h)² + k