Answer:144n Cubic units
Explanation:
The volume of a prism is given by V = Bh, where B is the area of the base and h is the height of the prism. The volume of a cylinder is given by V = πr^2h, where r is the radius of the cylinder and h is its height. Since the prism and the cylinder have the same base area, we know that B = 247 square units for both shapes. We are given that the volume of the prism is 144π cubic units. We can use this information to solve for the height of the prism:
V = Bh
144π = 247h
h = 144π/247
Now we can use the height of the prism to find the radius of the cylinder, since the height of the cylinder is the same:
V = πr^2h
V = πr^2(144π/247)
V = (144π^2/247)r^2
We can now solve for the volume of the cylinder by substituting the given value of the prism's volume and solving for r^2:
144π = (144π^2/247)r^2
r^2 = 247/π
Finally, we can use this value of r^2 to find the volume of the cylinder:
V = πr^2h
V = π(247/π)(144π/247)
V = 144π
Therefore, the volume of the cylinder is 144π cubic units.