Answer:
1. Applying Laplace transform to each term:
L{(14t)} = 14/s^2
L{(3e^(-7t)cos(8t))} = 3/(s+7)^2 + 64/(s+7)^2
L{((2t-6)^2)} = 4(2/s^3 - 6/s^2 + 6/s)
Therefore,
L{f(t)} = 14/s^2 + 3/(s+7)^2 + 64/(s+7)^2 + 4(2/s^3 - 6/s^2 + 6/s)
Simplifying, we get
L{f(t)} = (28s - 24)/(s^3) + (3s^2 + 98s + 198)/(s^2 + 14s + 49) + (2/s^3)
2. Applying Laplace transform to the given differential equation, we get:
2L{y} + 3(s^2)L{y} - 23sL{y} - 12L{y} = 5/s^2 - 7/s
Simplifying and solving for L{y}, we get:
L{y} = (5/(2s^3)) - (7/(2s^2)) + (23/(4(s-1))) + (3/(4(s+1)))
3. Applying Laplace transform to each term:
L{(3+2te^(-4t))u(t)} = 3/s + 2/(s+4)^2
L{(8t-7t^3)} = 8/s^2 - 42/(s^4)
L{((t^2+3t-4))u(t)} = (1/s^3) + (3/s^2) - (4/s)
Therefore,
L{g(t)} = 3/s + 2/(s+4)^2 + 8/s^2 - 42/(s^4) + (1/s^3) + (3/s^2) - (4/s)
Simplifying, we get
L{g(t)} = (7s^4 - 76s^3 + 20s^2 + 96s - 24)/(s^4(s+4)^2)