Answer:
Jonah received $90 upfront as an upfront payment, and he earned $15 every time he mowed the lawn.
Explanation:
To solve this problem, let's break it down step by step.
Let's assume Jonah receives an upfront payment, denoted as 'U,' and he earns a certain amount of money each time he mows the lawn, denoted as 'M.'
According to the given information, after 2 weeks, Jonah had earned $120. We can express this as an equation:
2M + U = 120 -- Equation 1
Similarly, after 5 weeks, Jonah had earned $165. We can express this as another equation:
5M + U = 165 -- Equation 2
Now we have a system of two equations with two variables (M and U). We can solve these equations to find the values of M and U.
To solve this system of equations, we can use the method of substitution. We'll solve Equation 1 for U and substitute it into Equation 2. Let's solve Equation 1 for U:
2M + U = 120
U = 120 - 2M -- Equation 3
Now we'll substitute Equation 3 into Equation 2:
5M + (120 - 2M) = 165
Simplifying the equation:
5M + 120 - 2M = 165
Combining like terms:
3M + 120 = 165
Subtracting 120 from both sides:
3M = 45
Dividing both sides by 3:
M = 15
Now that we have the value of M, we can substitute it back into Equation 3 to find the value of U:
U = 120 - 2M
U = 120 - 2(15)
U = 120 - 30
U = 90
Therefore, Jonah received $90 upfront, and he earned $15 every time he mowed the lawn.
To graph the equation and show that it is a linear function, we can plot the points representing the number of weeks on the x-axis and the amount earned on the y-axis.
For example, when Jonah mows the lawn for 2 weeks, he earns $120, so we have the point (2, 120). When he mows for 5 weeks, he earns $165, so we have the point (5, 165).
Plotting these points on a graph will give us a straight line, indicating that the relationship between the number of weeks and the amount earned is linear.