asked 142k views
3 votes
What is (x³-8x² + 6x +41) ÷ (x-4)

asked
User Giohji
by
6.8k points

1 Answer

3 votes

Step 1: Write the dividend and divisor:


\sf\:\frac{{x^3 - 8x^2 + 6x + 41}}{{x - 4}} \\

Step 2: Divide the first term of the dividend by the first term of the divisor:


\sf\:\frac{{x^3}}{{x}} = x^2 \\

Step 3: Multiply the divisor (x - 4) by the result (x^2):


\sf\:(x - 4) \cdot (x^2) = x^3 - 4x^2 \\

Step 4: Subtract the result from the original dividend:


\sf\:(x^3 - 8x^2 + 6x + 41) - (x^3 - 4x^2) = -4x^2 + 6x + 41 \\

Step 5: Bring down the next term from the dividend:


\sf\:\frac{{-4x^2 + 6x + 41}}{{x - 4}} \\

Step 6: Repeat steps 2-5 with the new dividend:


\sf\:\frac{{-4x^2}}{{x}} = -4x \\


\sf\:(x - 4) \cdot (-4x) = -4x^2 + 16x \\


\sf\:(-4x^2 + 6x + 41) - (-4x^2 + 16x) = -10x + 41 \\

Step 7: Bring down the next term from the dividend:


\sf\:\frac{{-10x + 41}}{{x - 4}} \\

Step 8: Repeat steps 2-5 with the new dividend:


\sf\:\frac{{-10x}}{{x}} = -10 \\


\sf\:(x - 4) \cdot (-10) = -10x + 40 \\


\sf\:(-10x + 41) - (-10x + 40) = 1 \\

Step 9: There are no more terms to bring down, so the division is complete.

Step 10: Write the final result:

The quotient is
\sf\:x^2 - 4x - 10\\ and the remainder is 1.

Therefore, the division of
\sf\:(x^3 - 8x^2 + 6x + 41) by (x - 4) \\ is:


\sf\:(x^3 - 8x^2 + 6x + 41) ÷ (x - 4) \\
\sf\:= x^2 - 4x - 10 + \frac{{1}}{{x - 4}} \\

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.