Answer:Therefore, the equation of the line with a slope of 9/7 and containing the midpoint of the line segment with endpoints (2, -3) and (-6, 5) is:
y = (9/7)x + 25/7.
Step-by-step explanation:Step 1: Find the midpoint of the line segment.
The midpoint formula is given by:
Midpoint = ((x1 + x2) / 2, (y1 + y2) / 2)
Given the endpoints of the line segment as (2, -3) and (-6, 5), we can find the midpoint as follows:
Midpoint = ((2 + (-6)) / 2, (-3 + 5) / 2)
Midpoint = (-4 / 2, 2 / 2)
Midpoint = (-2, 1)
So, the midpoint of the line segment is (-2, 1).
Step 2: Write the equation of the line using the slope-intercept form.
The slope-intercept form of a line is given by:
y = mx + b
where m is the slope and b is the y-intercept.
Given the slope as 9/7, we have:
y = (9/7)x + b
Step 3: Substitute the coordinates of the midpoint to find the value of b.
Using the coordinates of the midpoint (-2, 1), we can substitute these values into the equation:
1 = (9/7)(-2) + b
1 = -18/7 + b
To find the value of b, we can solve this equation:
1 + 18/7 = b
25/7 = b
Step 4: Write the final equation of the line.
Using the value of b, the equation becomes:
y = (9/7)x + 25/7