asked 131k views
3 votes
Help me to solve this ​

Help me to solve this ​-example-1

1 Answer

7 votes

To prove the equation


\sf\:(1 + \sin(2\theta) - \cos(2\theta))/(1 + \sin(2\theta) + \cos(2\theta)) = \tan(\theta)\\, we will simplify the left-hand side and show that it is equal to the right-hand side.

Starting with the left-hand side:


\sf\:(1 + \sin(2\theta) - \cos(2\theta))/(1 + \sin(2\theta) + \cos(2\theta)) \\

Let's manipulate the numerator first. Using the double-angle identities, we have:


\sf\:\sin(2\theta) = 2\sin(\theta)\cos(\theta) \\


\sf\:\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 1 - 2\sin^2(\theta) \\

Substituting these expressions into the numerator:


\sf\:1 + \sin(2\theta) - \cos(2\theta) = 1 + 2\sin(\theta)\cos(\theta) - (1 - 2\sin^2(\theta)) \\

Simplifying the numerator:


\sf\:1 + 2\sin(\theta)\cos(\theta) - 1 + 2\sin^2(\theta) = 2\sin(\theta)\cos(\theta) + 2\sin^2(\theta) \\

Factoring out a common factor of 2:


\sf\:2(\sin(\theta)\cos(\theta) + \sin^2(\theta)) \\

Using the identity
\sf\:\sin^2(\theta) = 1 - \cos^2(\theta), we can rewrite the numerator as:


\sf\:2(\sin(\theta)\cos(\theta) + (1 - \cos^2(\theta))) \\

Simplifying further:


\sf\:2(\sin(\theta)\cos(\theta) + 1 - \cos^2(\theta)) \\

Now, let's simplify the denominator:


\sf\:1 + \sin(2\theta) + \cos(2\theta) = 1 + 2\sin(\theta)\cos(\theta) + (1 - 2\sin^2(\theta)) \\

Simplifying the denominator:


\sf\:1 + 2\sin(\theta)\cos(\theta) + 1 - 2\sin^2(\theta) = 2\sin(\theta)\cos(\theta) + 2(1 - \sin^2(\theta)) \\

Using the identity
\sf\:\sin^2(\theta) = 1 - \cos^2(\theta), we can rewrite the denominator as:


\sf\:2\sin(\theta)\cos(\theta) + 2(1 - \cos^2(\theta))\\

Simplifying further:


\sf\:2\sin(\theta)\cos(\theta) + 2 - 2\cos^2(\theta) \\

Now, we can substitute the simplified numerator and denominator back into the original equation:


\sf\:(2(\sin(\theta)\cos(\theta) + 1 - \cos^2(\theta)))/(2\sin(\theta)\cos(\theta) + 2 - 2\cos^2(\theta))\\

Canceling out the common factors of 2 in the numerator and denominator:


\sf\:(\sin(\theta)\cos(\theta) + 1 - \cos^2(\theta))/(\sin(\theta)\cos(\theta) + 1 - \cos^2(\theta))\\

Simplifying further, we can see that the numerator and denominator are equal:


1

Therefore, we have shown that:


\sf\:(1 + \sin(2\theta) - \cos(2\theta))/(1 + \sin(2\theta) + \cos(2\theta)) = 1\\

And since
\sf\:1 = \tan(\theta), we have proven the original equation:


(1 + \sin(2\theta) - \cos(2\theta))/(1 + \sin(2\theta) + \cos(2\theta)) = \tan(\theta)\\

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.