Answer:
Explanation:
When a rectangle is rotated 90° counterclockwise about the origin, the coordinates change as follows:
Point P (x, y) becomes P' (-y, x)
Point Q (x, y) becomes Q' (-y, x)
Point R (x, y) becomes R' (-y, x)
Point S (x, y) becomes S' (-y, x)
Since we are looking for the coordinates of point R', we substitute the original coordinates of point R into the formula:
R' = (-y, x) = (-(6), 7) = (-6, 7)
Therefore, the coordinates of point R' are (-6, 7).
The correct answer is "(−6,7)" or "( - 6 , 7 )".
Part B:
When a rectangle is reflected across the y-axis, the x-coordinate changes its sign, and the y-coordinate remains the same.
After reflecting across the y-axis, the coordinates become:
Point P'' (x, y) becomes P'' (-x, y)
Point Q'' (x, y) becomes Q'' (-x, y)
Point R'' (x, y) becomes R'' (-x, y)
Point S'' (x, y) becomes S'' (-x, y)
Since we are looking for the coordinates of point Q'', we substitute the original coordinates of point Q into the formula:
Q'' = (-x, y) = (-(6), 0) = (-6, 0)
After reflecting across the y-axis, the rectangle is translated down 2 units. Since the y-coordinate of Q'' is 0, the translation down 2 units does not affect it.
Therefore, the coordinates of point Q'' are (-6, 0).
The correct answer is "(−6,0)" or "( - 6 , 0 )".