Answer:
C
Explanation:
cot²θ = 1/tan²θ
plug this in to get
1/(1/tan²θ + 1)
1/tan²θ + 1 = 1/tan²θ + tan²θ/tan²θ = (1+tan²θ)/tan²θ
we then have
1/((1+tan²θ)/tan²θ)
1/(x/y) = y/x, so this is equal to
tan²θ/(1+tan²θ)
tan²θ = sin²θ/cos²θ, so plug this in to get
(sin²θ/cos²θ)/(1+sin²θ/cos²θ)
1+sin²θ/cos²θ = cos²θ/cos²θ + sin²θ/cos²θ
sin²θ + cos²θ = 1, so we have
(cos²θ+sin²θ)/cos²θ = 1/cos²θ. plug this in to get
(sin²θ/cos²θ)/(1/cos²θ)
(a/b)/(c/d) = (d/c) * (a/b), so we have
(sin²θ/cos²θ)/(1/cos²θ) = cos²θ/1 * sin²θ/cos²θ = sin²θ