Answer:
yw;)
Explanation:
First, let’s find the derivatives of x1(t) and x2(t):
x1'(t) = d/dt [2e^(-t) - 2e^(-2t)] = -2e^(-t) + 4e^(-2t)
x2'(t) = d/dt [e^(-t) - 2e^(-2t)] = -e^(-t) + 4e^(-2t)
Now let’s substitute these derivatives into the given system of equations:
x1' = -2x2 becomes -2e^(-t) + 4e^(-2t) = -2(e^(-t) - 2e^(-2t)), which simplifies to -2e^(-t) + 4e^(-2t) = -2e^(-t) + 4e^(-2t).
x2' = x1 - 3x2 becomes -e^(-t) + 4e^(-2t) = (2e^(-t) - 2e^(-2t)) - 3(e^(-t) - 2e^(-2t)), which simplifies to -e^(-t) + 4e^(-2t) = -e^(-t) + 4e^(-2t).
Since both equations are true, we can conclude that x1(t) and x2(t) do indeed solve the given system of equations.