Answer: Let's solve this problem step by step.
First, let's assume the salaries of An and B to be 5x and 3x, respectively, where x is a common multiplier.
According to the given information, they save Rs. 2600 and Rs. 1800, respectively. Since savings come from the remaining portion of their incomes after spending, we can calculate their expenditures as follows:
For An:
Income of An = Salary of An + Savings of An
Income of An = 5x + 2600
For B:
Income of B = Salary of B + Savings of B
Income of B = 3x + 1800
Now, let's consider the proportion of their expenditures. It is given that the proportion of their expenditures is 9:5. So, we can write the following equation:
(Expenditure of An)/(Expenditure of B) = 9/5
Since expenditure is the complement of savings, we have:
[(Income of An - Savings of An)] / [(Income of B - Savings of B)] = 9/5
Substituting the previously derived expressions for income, we get:
[(5x + 2600 - 2600)] / [(3x + 1800 - 1800)] = 9/5
Simplifying the equation, we have:
5x / 3x = 9/5
Cross-multiplying, we get:
5 * 3x = 9 * 3x
15x = 27x
Subtracting 27x from both sides, we have:
0 = 12x
This implies that x = 0, which is not a valid solution. Therefore, there seems to be an error or inconsistency in the given information or equations. Please recheck the problem statement or provide additional information to help resolve the issue.