Answer:
![\displaystyle{X = \left[\begin{array}{ccc}1&1\\1&1\end{array}\right] }](https://img.qammunity.org/2024/formulas/mathematics/high-school/ricr44uf56kfsw7uqgsadlfr652xr7pw23.png)
Explanation:
Solve the matrices like normal equation, you can add 2X both sides so we have:
![\displaystyle{\left[\begin{array}{ccc}2&3\\3&2\end{array}\right] = \left[\begin{array}{ccc}0&1\\1&0\end{array}\right] + 2X}](https://img.qammunity.org/2024/formulas/mathematics/high-school/yo2murbntrd1os8ef2q1d45bsa72jv51t5.png)
Now, subtract the matrices:
![\displaystyle{\left[\begin{array}{ccc}2&3\\3&2\end{array}\right] -\left[\begin{array}{ccc}0&1\\1&0\end{array}\right] = 2X}](https://img.qammunity.org/2024/formulas/mathematics/high-school/dwb9jtdaj5so66nscmx38u2bs0k9eiwflk.png)
Follow the matrices subtraction laws:
![\displaystyle{\left[\begin{array}{ccc}a&b\\c&d\end{array}\right] -\left[\begin{array}{ccc}e&f\\g&h\end{array}\right] = \left[\begin{array}{ccc}a-e&b-f\\c-g&d-h\end{array}\right] }](https://img.qammunity.org/2024/formulas/mathematics/high-school/y6g466lhhks0rcw7jco5oaww66eua02xj1.png)
Therefore:
![\displaystyle{\left[\begin{array}{ccc}2-0&3-1\\3-1&2-0\end{array}\right] = 2X}\\\\\displaystyle{\left[\begin{array}{ccc}2&2\\2&2\end{array}\right] = 2X}](https://img.qammunity.org/2024/formulas/mathematics/high-school/cdqbdj29j64sz6jqe3cecczdy93r44eh95.png)
Divide both sides by 2, leaves us with:
![\displaystyle{(1)/(2)\left[\begin{array}{ccc}2&2\\2&2\end{array}\right] = X}](https://img.qammunity.org/2024/formulas/mathematics/high-school/6o622y2d3q9sz8156pb82d1yje2zu0ta7y.png)
Expand 1/2 inside the matrix, multiplying whole elements. Therefore:
![\displaystyle{\left[\begin{array}{ccc}1&1\\1&1\end{array}\right] = X}](https://img.qammunity.org/2024/formulas/mathematics/high-school/n2er5g9244uttat8keo7rby158zbiczv4q.png)
Hence,
![\displaystyle{X = \left[\begin{array}{ccc}1&1\\1&1\end{array}\right] }](https://img.qammunity.org/2024/formulas/mathematics/high-school/ricr44uf56kfsw7uqgsadlfr652xr7pw23.png)