To find the zeros of the function f(x) = 2x^2 + 4x - 6, we need to solve for x when f(x) = 0. We can do this by factoring the quadratic expression or by using the quadratic formula. Once we find the zeros, we can plot them on a graph to show where the function intersects the x-axis.
Factoring method:
f(x) = 2x^2 + 4x - 6
f(x) = 2(x^2 + 2x - 3)
f(x) = 2(x + 3)(x - 1)
The zeros of the function are x = -3 and x = 1.
Using the quadratic formula:
The quadratic formula is:
x = (-b ± sqrt(b^2 - 4ac)) / 2a
where a, b, and c are the coefficients of the quadratic expression ax^2 + bx + c.
For the function f(x) = 2x^2 + 4x - 6, we have:
a = 2, b = 4, c = -6
x = (-4 ± sqrt(4^2 - 4(2)(-6))) / 2(2)
x = (-4 ± sqrt(64)) / 4
x = (-4 ± 8) / 4
x = -3, 1
The zeros of the function are x = -3 and x = 1.
The graph that correctly shows the zeros of the function f(x) = 2x^2 + 4x - 6 is a graph with x-axis labeled with -3 and 1, and the curve of the function intersecting the x-axis at those points. This can be represented by a graph that looks like an inverted U-shape with the x-axis being intersected at x = -3 and x = 1.