asked 166k views
2 votes
Find all complex cube roots of -2-i
. Give your answers in a+bi form

asked
User Apdnu
by
8.1k points

1 Answer

3 votes

so we have a point at -2-i or -2 - 1i, that means that both "x" and "y" are negative, the only occurs in the III Quadrant, so hmmm let's find the modulus and angle θ


\stackrel{a}{-2}\stackrel{b}{-1i}\hspace{5em} \begin{cases} r=√((-2)^2 + (-1)^2)\\ \qquad √(5)\\ \theta =tan^(-1)\left( (-1)/(-2) \right)\\[1em] \qquad \approx 206.57^o \end{cases} \\\\\\ \stackrel{\textit{let's keep in mind that}}{\sqrt[3]{√(5)}\implies \left( 5^{(1)/(2)} \right)^{(1)/(3)}}\implies 5^{(1)/(6)}\implies \sqrt[6]{5} \\\\[-0.35em] ~\dotfill


\sqrt[n]{z}=\sqrt[n]{r}\left[ \cos\left( \cfrac{\theta+2\pi k}{n} \right) +i\sin\left( \cfrac{\theta+2\pi k}{n} \right)\right]\quad \begin{array}{llll} k\ roots\\ 0,1,2,3,... \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}


\boxed{k=0}\hspace{5em} \sqrt[ 3 ]{√(5)} \left[ \cos\left( \cfrac{ 206.57^o + 360^o( 0 )}{3} \right) +i \sin\left( \cfrac{ 206.57^o + 360^o( 0 )}{3} \right)\right] \\\\\\ \sqrt[ 6 ]{5} \left[ \cos\left( \cfrac{ 206.57^o }{3} \right) +i \sin\left( \cfrac{ 206.57^o }{3} \right)\right] \\\\\\ \sqrt[6]{5}\left[ \cos(68.86^o) +i \sin(68.86^o)\right] ~~ \approx ~~ 0.47~~ + ~~1.22i \\\\[-0.35em] ~\dotfill


\boxed{k=1}\hspace{5em} \sqrt[ 6 ]{5} \left[ \cos\left( \cfrac{ 206.57^o + 360^o( 1 )}{3} \right) +i \sin\left( \cfrac{ 206.57^o + 360^o( 1 )}{3} \right)\right] \\\\\\ \sqrt[ 6 ]{5} \left[ \cos\left( \cfrac{ 566.57^o }{3} \right) +i \sin\left( \cfrac{ 566.57^o }{3} \right)\right] \\\\\\ \sqrt[ 6 ]{5} \left[ \cos(188.86^o) +i \sin(188.86^o)\right] ~~ \approx ~~ -1.29~~ - ~~0.20i \\\\[-0.35em] ~\dotfill


\boxed{k=2}\hspace{5em} \sqrt[ 6 ]{5} \left[ \cos\left( \cfrac{ 206.57^o + 360^o( 2 )}{3} \right) +i \sin\left( \cfrac{ 206.57^o + 360^o( 2 )}{3} \right)\right] \\\\\\ \sqrt[ 6 ]{5} \left[ \cos\left( \cfrac{ 926.57^o }{3} \right) +i \sin\left( \cfrac{ 926.57^o }{3} \right)\right] \\\\\\ \sqrt[ 6 ]{5} \left[ \cos(308.86^o) +i \sin(308.86^o)\right] ~~ \approx ~~ 0.82~~ - ~~1.02i

just a quick clarification, notice that if we get the inverse tangent of (-1 / -2) the angle we get will be in the range of ±π/2, that's because that is the range inverse tangent is restricted to, however, our terminal point on the complex plane is on the III Quadrant, not the 1st one, so we use the reference angle on the III Quadrant, and that is about 206.57°.

answered
User Lars Udengaard
by
7.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.