Answer:
(2xye^x² - 2xy³) / (5y^4 + 3y²x² - e^x²)
Explanation:
differentiate each term:
d/dx (y^5) + d/dx (x² y³) = d/dx (1) + d/dx (ye^x²)
any time y is differentiated, make sure to include dy/dx:
5y^4 dy/dx + 2xy³ + 3y²x² dy/dx = 0 + e^x² dy/dx + 2xye^x²
collect terms with dy/dx:
dy/dx (5y^4 + 3y²x² - e^x²) = 2xye^x² - 2xy³
divide both sides by (5y^4 + 3y²x² - e^x²):
dy/dx = (2xye^x² - 2xy³) / (5y^4 + 3y²x² - e^x²)