asked 163k views
1 vote
Expand the expression:
(3a - 2b)^3

Show complete computation.​

2 Answers

3 votes

Answer:


27a^3-54a^2b+36ab^2-8b^3

Explanation:

To expand the expression (3a - 2b)³, we can use the Perfect Cube Formula.


\boxed{\begin{minipage}{6 cm}\underline{Perfect Cube Formula}\\\\$(x-y)^3=x^3-3x^2y+3xy^2-y^3$\\\end{minipage}}

Let:

  • x = 3a
  • y = 2b

Substitute the values into the formula, and use the exponent rule


\boxed{(xy)^n=x^n \cdot y^n} :

Therefore:


\begin{aligned}(3a-2b)^3&=(3a)^3-3(3a)^2(2b)+3(3a)(2b)^2-(2b)^3\\&=3^3 \cdot a^3-3 \cdot 3^2 \cdot a^2 \cdot 2b+3 \cdot 3a \cdot 2^2\cdot b^2-2^3\cdot b^3\\&=27a^3-3 \cdot 9 \cdot a^2 \cdot 2b+9a \cdot 4b^2-8b^3\\&=27a^3-54a^2b+36ab^2-8b^3\end{aligned}

So the expression (3a - 2b)³ expanded is 27a³ - 54a²b + 36ab² - 8b³.

answered
User NoelProf
by
8.4k points
5 votes

Answer:

I have solved it and attached in the explanation.

Explanation:

Expand the expression: (3a - 2b)^3 Show complete computation.​-example-1
answered
User Systembolaget
by
8.8k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.