asked 43.6k views
2 votes
Evaluate the integral

Evaluate the integral-example-1

1 Answer

2 votes

Answer:


\textsf{C.} \quad (4^x)/(\ln 4)+C

Explanation:

Given indefinite integral:


\displaystyle \int 4^(2x)4^(-x) \; \text{d}x

First, simplify the function by applying the exponent rule
a^b \cdot a^c=a^(b+c) :


\begin{aligned}\displaystyle \int 4^(2x)4^(-x) \; \text{d}x&=\int 4^((2x+(-x)))\; \text{d}x\\\\&=\int 4^x\; \text{d}x\end{aligned}

Rewrite 4 as
e^(\ln 4), therefore:


\displaystyle \\=\int \left(e^(\ln 4)\right)^x\; \text{d}x

Apply the exponent rule
(a^b)^c=a^(bc):


\displaystyle =\int e^(x\ln 4)\; \text{d}x

Now we can solve by substitution.


\begin{aligned}\textsf{Let}\;\;u=x \ln 4 \implies \frac{\text{d}u}{\text{d}x}&=\ln 4\\\\ \implies \text{d}x&=(1)/(\ln 4)\;\text{d}u\end{aligned}

Rewrite the integral in terms of u and du.


\displaystyle \int e^(x\ln 4)\; \text{d}x=\int e^u \cdot (1)/(\ln 4)\;\text{d}u

Take the constant outside the integral:


\displaystyle=(1)/(\ln 4) \int e^u \;\text{d}u

Integrate:


\displaystyle =(e^u)/(\ln 4)+C

Substitute back in u = x ln 4:


\displaystyle =(e^(x\ln 4))/(\ln 4)+C

Apply the exponent rule
(a^b)^c=a^(bc):


\displaystyle =(4^x)/(\ln 4)+C

Therefore:


\displaystyle \int 4^(2x)4^(-x) \; \text{d}x=(4^x)/(\ln 4)+C


\hrulefill

Integration rule used:


\boxed{\begin{minipage}{3 cm}\underline{Integrating $e^x$}\\\\$\displaystyle \int e^x\:\text{d}x=e^x+\text{C}$\end{minipage}}

answered
User Utku
by
8.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.