Answer:
√y = ¼ x² + 2
y = (¼ x² + 2)²
Explanation:
dy / dx = x √y
Separate the variables:
dy / √y = x dx
Change radical to exponent:
y^-½ dy = x dx
Integrate both sides using power rule:
2 y^½ = ½ x² + C
2√y = ½ x² + C
Substitute initial condition:
2√9 = ½ (2)² + C
6 = 2 + C
C = 4
Therefore:
2√y = ½ x² + 4
√y = ¼ x² + 2
y = (¼ x² + 2)²