Answer:
To determine the domain of f - g, we need to first find the expression for f - g.
f - g = (x^2 - 4) - (2x + 3)
f - g = x^2 - 2x - 7
The domain of f - g is the set of all real numbers for which the expression x^2 - 2x - 7 is defined.
We know that a quadratic expression of the form ax^2 + bx + c is defined for all real numbers x, so long as the expression under the square root in the quadratic formula (b^2 - 4ac) is non-negative.
In this case, a = 1, b = -2, and c = -7, so the expression under the square root is:
b^2 - 4ac = (-2)^2 - 4(1)(-7) = 4 + 28 = 32
Since 32 is positive, we know that the expression x^2 - 2x - 7 is defined for all real numbers x, and therefore the domain of f - g is all real numbers.
So the answer is not among the choices given.