asked 37.4k views
5 votes
The circumference of a wheel is 320.28 centimeters.

Please help.
a) Determine the radius of the wheel.

b) Determine the area of the wheel.

1 Answer

2 votes

Answer:

a) The radius of the wheel is 51 cm.

b) The area of the wheel is 8167.14 cm².

Step-by-step Step-by-step explanation:

SOLUTION :

Here we have given that the circumference of a wheel is 320.28 centimeters. We have to find the :

  • a) Determine the radius of the wheel.
  • b) Determine the area of the wheel.

Finding the radius of circle by substituting all the given values in the formula :


\quad{\longrightarrow{\sf{C_((Circle)) = 2 \pi r}}}

  • C = circumference
  • π = 3.14
  • r = radius


\quad{\longrightarrow{\sf{320.28=2 \pi r}}}


\quad{\longrightarrow{\sf{320.28=2 * 3.14 * r}}}


\quad{\longrightarrow{\sf{320.28=6.28 * r}}}


\quad{\longrightarrow{\sf{r = (320.28)/(6.28)}}}


\quad{\longrightarrow{\sf{r = \cancel{(320.28)/(6.28)}}}}


\quad{\longrightarrow{\sf{\underline{\underline{\purple{r = 51 \: cm}}}}}}

Hence, the radius of circle is 51 cm.


\begin{gathered} \end{gathered}

Now, calculating the area of circle by substituting all the given values in the formula


\quad{\longrightarrow{\sf{A_((Circle)) = \pi {r}^(2)}}}

  • A = area
  • π = 3.14
  • r = radius


\quad{\longrightarrow{\sf{A_((Circle)) = 3.14 {(51)}^(2) }}}


\quad{\longrightarrow{\sf{A_((Circle)) = 3.14 {(51 * 51)}}}}


\quad{\longrightarrow{\sf{A_((Circle)) = 3.14 {(2601)}}}}


\quad{\longrightarrow{\sf{A_((Circle)) = 3.14 * 2601}}}


\quad{\longrightarrow{\sf{\underline{\underline{\pink{A_((Circle)) = 8167.14 \: {cm}^(2)}}}}}}

Hence, the area of circle is 8167.14 cm².

————————————————

answered
User ZijunLost
by
8.0k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.