Answer:
(x - 8)^2 + (y + 10)^2 = 169
Explanation:
you need to do completing the square
x^2 + y^2 -16x + 20y - 5 = 0
(x)^2 - 2(8)(x) + (y)^2 + 2(10)(y) - 5 = 0
(x)^2 + 2(-8)(x) + (-8)^2 - (-8)^2 + (y)^2 + 2(10)(y) + (10)^2 - (10)^2 - 5 = 0
[(x)^2 + 2(-8)(x) + (-8)^2] + [(y)^2 + 2(10)(y) + (10)^2] - (10)^2 - (-8)^2 - 5 = 0
### (a)^2 + 2(a)(b) + (b)^2 = (a + b)^2 ###
(x - 8)^2 + (y + 10)^2 -100 - 64 - 5 = 0
(x - 8)^2 + (y + 10)^2 -169 = 0
(x - 8)^2 + (y + 10)^2 = 169