asked 96.7k views
4 votes
A particular balloon can hold 1.50 L of air before it bursts. Suppose the balloon contains 1.28 L of air at 2°C. Assuming a constant pressure, the temperature the balloon will burst will be

asked
User Zavione
by
8.0k points

2 Answers

3 votes

Answer:

the answer is 27.32 L. because there is 20 L in just 1.50 add the Celsius you get 7.32 add them and u get 27.32

answered
User MeanEYE
by
8.6k points
0 votes
Using Charles's Law, we know that the volume of a gas is proportional to the temperature of the gas, assuming a constant pressure. We can use this relationship to solve the problem.

First, we need to calculate the temperature at which the balloon will reach its maximum volume before bursting. We can use the following equation:

(V1/T1) = (V2/T2)

where V1 is the initial volume of the gas, T1 is the initial temperature, V2 is the maximum volume of the gas before bursting, and T2 is the temperature at which the gas will reach its maximum volume.

Plugging in the values we know, we get:

(1.28 L)/(2°C + 273.15) = (1.50 L)/(T2 + 273.15)

Simplifying this equation, we get:

T2 = [(1.50 L)(2°C + 273.15)]/(1.28 L) - 273.15

T2 = 305.7 K - 273.15

T2 = 32.55°C

Therefore, the temperature at which the balloon will burst is 32.55°C.
answered
User Souser
by
8.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.